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ROTATION
TA denotes the statistic for the method with an abbre-
viation A. ¢, denotes the test based on TA and Py denotes the

i-th p-value.

A TA

——z pi/'/n_‘
i=1 '

Sum of pi's T

‘Fisher T, = - 2 Efn[pi] / '/IT

i=1

n
Logistic T, = - z &m[pi/(l—pi)]/ Y n
i=1 '
n
Inverse normal Ty = - z 5—1(pi) / ¥n
i=1
Minimum of p;’6 Toin = — Hin(py)
1 i=n
Maximam of pi's Tmai = - Hax(pi)

1.2 1 = n

Abbreviation
EBS : exact Bahadur slope

ABS :approximate Bahadur slope

LF : local power
iid : independent and identically distributed
w.p.1l : with probability 1

rv : random variable



Criteria

* CA(E) denotes the exact Bahadur slope of the method with an
abbreviation A at parameter value §

¥ o(x) and #(x) are the probability density function (pdf)
and the distribution function (DF) of N(0,1) respec—

tively .
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COMBINING INDEPENDENT TESTS IN CASE OF TRIANGULAR AND
CONDITIONAL SHIFTED EXPONENTIAL DISTRIBUTIONS

By
Abed El-Qader Salah Sulieman El-Masri

ABSTRACT
In thie thesis we will consider the problem of combining
n independent tests as n — o for testing a simple hypo-
theeié in case of triangular and conditional shlfted exponen-
tial distributions. We will study a number of popular conmbi-
nation methods wiz., sum of p-values, inverse normal, logis-~
tic, Fisher, minimum of p-values and maximum of p-values. We

will compaxe their performance via Exact Bahadur Slope.

In case of triangular distribution ‘with pdf f£(x) =
(-bZ/ 2) x+b , 0 <¢<x ¢ (2/b), bz 2 we will £find that as
the parameter b — 2 the sum of p-values is better than all
other methods, followed in decreasing order by the inverse
normal, logistic and Fisher’s method. The worst 1is the
pinimuw and maximum of p-values methods. Also, as the para-
meter b —w we.will find that the sum of p-values is better
than all other methods, followed in decreasing order by the
maximum of p-values, the inverse normal, the logistic and the
Fisher’s methods. The worst is the method of minimum of p-

values. Also comparisons between the EBS's of the tests



mentioned above have been made for b : 2 £ b <w .

In case of conditional shifted exponential with pdf

~(x-y8&)
£{x[8) = e » X 2 8, @ € [a,0), a > 0

there are twoe cases to consider.

Case 1: When.el, 92, ... are distributed according to the
distribution function DF, we will show that if the parameter
¥ — 0 then the inverse normal is better than +the other
.methods and is followed in decreasing ordér by logistic, sum
of p-values and Fisher’s method. The worst is the minimum and

maximum of p-values.

But if the parameter » -—— o then the inverse normal is
better than all other methods, and is followed in decreasing

order by logistic, maximum of p-values and Fisher’s methos .,

Caselaz When 91, 62, .-. have the DF Gamma (1,2) we will show
that as the parameter » —— ® the inverse normal isg better
than all other methods, and is followed in decreasing order
by logistic, maximum of p-values, Fisher and sum of p-values.

The worst ie the minimum of p-values.

Also, we make some cowpariscns by numerical calculations

in both cases.
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CHAPTER 1

INTRODUCTION

11 PREFACE
The problem of combining independent tests of hypothesis

is an importaﬁt and also a popular statistical practice.

There are many methods which are used for combining in&epen—
dent tests and they are compared by using different criteria

viz., Exact Bahadur Slope (EBS)}, Approximate Bahadur Slope
(ABS), Pitman Efficiency, Local Power, Admigsibility and

others. In this thesis we will study only six combination
methode via EBS as the number of tests cqmbined tends +to

infinity in two cases.

In the first case, we will consider the triangular dis-
tribution. In the second case, we will consider the condi-

tional shifted exponential distribution.

12 REVIEW OF THE LITERATURE

Several authors have considered the problem of combining

n independent tests of hypothesis.

I1f HO ie a simple hypothesis then Birnbaum (1955) showed
that given any non-parametric comblnation method which has =a
monotone increasing acceptance region, there exists a problem

for which this method is most powerful against some alterna-



tive.

Littell and Folks (1971), studied four methods of com-
bining a finite number of independent tests. They found that
the Fisher method is better than the inverse normal method,
the minimum of p-values method and maximum of p-values via

Bahadur efficiency.

Later, Littell and Folks (1973) studied all methods of
combining a finite number of independent +tests. They found

that Fisher's method is optimal under some conditions.

Brown, Cohen and Strawderman (1976) have shown that such

tests form a complete class.

Bataineh (1990) studied the problem of combining n in-
dependent tests as mn —— . In case of shifted exponential
distribution, he looked at a number of popular combination
methods (inverse normal, logistic, Fisher, sum of p-values,
mninimum of p-values, and maximum of p?values) and compared
their performance via EBS, ABS and LP. Also, he proved that
the performance of no combination methed is wuniformly most
powerful, via EBS and ABS; but wvia LP the combihation

methods, CS(G), CL(S) and CN(B) are equivalent.

Abu-Dayyeh and Bataineh (1992) showed that Filgher'™s



methed is strictly dominated by the sum of p-values mnmethod
- via EBS in case of combining infinite number of independent
shifted expoenetial tests when the sample size of each tests

remains finite.

- Again Abu-Dayyeh (1882) showed that under contain condi-
tions, that the local limit of exact Bahadur efficiency is
equivalent to Pitman efficiency in case of shifted exponen-

tial distribution.

13 SPeECIFiC PROBLEMS

Suppose that we have n simple hypotheses

(1) . - | (1), _ i
i=1, ..., n 'such that Hgi) is rejected for large values of
some continuous rv T(i). 1 =1, ..., n. He want to combine

the n hypotheses into one in the following way:
Hy: (n n ) = (o} 2Py, ve
0' 1’ - = & 3 n — 0’ - = % 3 B ’
. _ 1 n

Hl' (73'1’ e Y?n) = Ql X L., X Qn {(7}0, “eny 7}0)} €1.23.2

There are many methods for combining several +teste of
hypothesis into one overall tests. Among these methods are
the omnibus methods which correspond to combining +the p-~
values of the different teests. The p-value of the 1-th +test

is given by



U, () = P& ) 5 v 1=1-Fey, 121, ..., n .z
0

where F(i) is the DF of T(i) under Héi). Then note that under
Héi) the rv U, ~u(0,1), 1 =1, ..., n and under Hii) the rv
Ui has same distribution for £ = 1, ..., n and this distribu-

tion is not u(0,1}.

In this thesis we will conslder the special case:

ny =6 and n§") =0 for £ =1, ..., nanda 71, ., o)
independent. Then (1.3.2) reduces to

HO: é = 0 ve Hl: ¢ e 1 - {0} 1.3. 40
Also, the p-values Ul’ ey Hn are iid rv's which have g

u(0,1) distribution under HU and a distribution which is not

u(0,1) under Hl. Then the testing problem (1.3.4) is equiva-

lent to

HO: Ui’ e Un are iid w(0,1), vs

le Ul’ vees Un are iid with pdf f which is not wu(0,1) but
a support A which is a subset of (0,1), €1.3.%

. In this thesis we will study the case where
£(u) = (-b%/2)u + b, 0 <u < (2/b), b r 2
and we will study only eix omnibus methods viz., maximum of
p-values, minimum of p—valueé, Fisher, logistic, inverse
normal and sum of p-values. Then (1.3.5) reduces to Ul’ ae ey
Un are 1id rv's with pdf f and we want to test
HO: f = u(0,1), vs Hl: £f # u(0,1) but the support of f is
a subset of u(0,1). (1.3,8)



We will study the six methods via EBS when n — o and this
constitutes our firet problem which is studied in chapter 2.
Next we will take the case
ny =¥ Bi y i=z=1, ..., n
where 61, ey Bn are iid with DF F with support [a,o), a = 0
and we want to test
Hy: 7 = 0 ve Hy: # > 0 | €1.3.7)

and where the i-th problem is based on Ti, N, Ti which are
i

independent where pdf is iziven by E(y@i,l). Then byh suf-
ficiency we can assume n,; =1 forli = 1, ..., n. Thus the
second problem that we will study in chapter 3 is: Tl""’Tn
are independent E(rei,l), and we want to test

HO: ¥ = 0 ve le ¥ >0 €1.3.8)
where 61,...,9n are iid with DF F with support [a,w), a = 0.
He want to study the same six methods (used in the first

problem) via EBS ag n ——+ o, All the above methods viz.

n
= {max Pi) y — (min Pi) s - 2 Z 'cnpi ’
i=1
n
~ Py =
- Z in - y = Z ¥ (Pi) f R Z Pi
: 1-p
i=1 1 =

i=1 i=1

reject-l-]0 for large values of the test statistics.

14 DEFMNITIONE AND - PRELIMINARIES

In this section we will state some definitions and

on



preliminaries that will be used later.

Definition 1.4.1. (Bahadur Efficiency and EBS)

Let X,, X ., X be 1id from a distribution with paf

1 2
P(x,8), and we want to test HO: & = 60, ve le 8 e E ~ {60}_
Let {T;},{Tg} be two sequences of test statistics for testing

0 Let the significance level attained by Ti be Li =1 -

i : - s S _
Fi(Tn) where Fi(ti) = PHO(TB = ti)’ i = 1, 2. Then there

H

existe a positive valued function 01(9) called +the exact
Bahadur slope of the seguence {Ti] such that Ci(s) =

i

] 2
llm-ﬁan

n—w
1 . 2 -
{T} relative to {T_ 1 is given by ¢4, = C,(6) / Ca(8). (For

w.p.1l under & and the Bahadur efficiency of

more details, see Sexrfling [91)

Theorem 1.4.1. ( A large deviation theorem )

Let Xl, Xz, .y Xn be iid, with distribution F and put
n :
Sn = E: Xi._ﬁssume that the mgf (moment generating func-
i=1
tion) M(z) = Ey [ezx] exists in a neighbourhood of zero. Put
m(t) = inf e U% M(z) then lim - 2/n én Pp(S_ 2 nt) = - 2 {n
z i+ n

m(t). (See Serfling [98])

Theorem 1. 4.2. (Bahadur Theorem)

Let {Tn} be a sequence of test statistics which satisg-

fies the following:



T a.s,

Ve

»  h{(e) where b(8) « R.

2. There exists an open interval I containing {b(®): ¢ « 0},

and a function g continuous on I such that

lim '—im[1~}5n [/_rt]]zg(t)

n—oo n
then the EBS is given by C(¢) = g(b{€)).

{See Serfling [91)

The following theorems are from Abu Dayyah {1]. For more

detalls see the reference.

Theorem 1.4, 3.

Let X,, X

10 Xos -eus Xn be iid with p.d.f £(x,8) and we want
to test HO: 8 =z 0, vs Hl: € > 0. For =1, 2

let Tn-

g fj(xi)// Y n be a sequence of statistics

1
such that H0 will be rejected for large values of Tn 3 and
: ?

Mg

let ¢j be the test based on Tn 3
Assume E,(f,(x})) > 0, V & = o, Eo(fj(x)) = 0, var(f,(x)) > 0,
the mgf Hj(fj(x}) exlists in a nefghbourhood of zero and fj(x)_
is differentiable for J = 1,2 then



1, If b, {0) 1s finite for 3 = 1, 2 then

Var(f {x)) , 2
C,(8) =0 b,(0)
lim ! = var(f {x)) }
a— 0 02(6) o=0 bz((})

where bj(ﬁ) 9(£j(x)), and cj(e) is EBS of test ¢j at 6.
2. 1f b (0) is infinite for some j = 1, 2 then

var(f2(x)} , 2
= n
650 Cye)  g2r(H (X)) | aip bi(e)

Theorem 1.4, 4.

If Tél) and ng) are two test statistics for testing HO:
e =0, vé Hl: € 5> 0 with distribution functions Fél) and Féz)
under H respectively, and that T(l) ie at least as powerful
as T(2) at 6 for any level o, then if ¢J is the test based on
T(j) j = 1,2 then

ci e = c(z)(e)
1

Corollary 1.4.1. If Tn is the uniformly most powerful test V

%, then it is the best test via EBS.

Theorem 1.4, 5.,

2t <m(t) £et Vt: 0 < t. < 0.5

where



Theorem 1. 4.5,

1. m(t) =2 2% e °, Vitz=0

A
[
l
o
€
o
v

2. mL(t) <%t e s 0.852

| 3
3. m (1) £ ¢ [ 2 / (1+t%) ] el™ vz
where
m (t) = inf {-e_tz Tz CSC(mz)
. ze(0,1)

and C5C is an abbreviation for cosecant function.

Theorem 1,4.7.

For x > 0,

p(x e = - 8{x) = of
p 4 x3 ) / x
Theorem 1. 4. 8.
For x > D
e(x)
1 - &(x) » @ — .
x + Y /2

15 SurmMARY OF THE RESULTS
In this theels, we will study the combination tests from

the point of view of EBS for the triangular distribution and



alsc for the conditional shifted exponential distribution.

The thesis is divided into three chapters. In chapter 1,
we present the testing problems under consideration. Also we
glve a historical review of the related literature. Then we
state some definitions and preliminaries that will be used in

the theeis.

In Chapter 2, we will coneider the problem (1.3.6),

which is stated again below.

Suppose that the p-values Ul, c e Un are iid rv's which

have a u(0,1) distribution under HO and a distribution which
is not w(0,1) under Hl’
i.e,, HG: Ul’ .y Un are 1id uw(0,1), ve

H 2, Un are iid with p.d.f f which is not

1* Uy
u(0,1) but has a support A which isla subset of (0,1).

In this chapter we will study the case where
£(u) = (-b%/2) u + b, 0 < U < 2/b, b > 0.
We etudy the behaviour of the tests mentloned in the previous
eectione via EBS.

In particular we prove

10



C (b)

lim —EEE—~f = 0 where C¢(b) refer to any one of Cs(b},
b—2 C¢(b)
05(2) CN(Z)
C;(b), Cu(b), C.(b), and = 1.084774707, =
L N 3
C,(2) C:(2)
CL(z) N L
1.078030255, = 1.5616979860. Also, we will show that
CF(2)
Coax (P}
lim ———— = 1 where C¢(h) < {#S(b),CL(b),CN(b),CF(b)}.
b—oo C¢(b) .

Further more we ﬁill show that

1. C.(b) >C . (b), Vbez 2
2.  C__.(b) > Cu(b) , Vb g
3. Cy(b) > Cp(b) for large b
4. Cp(b) > Cp(b) for large b

In Chapter 3, we will consider problem (1.3.8), which is
stated again below.

Suppose that we test
HO: y = 0, vs Hl: Y > 0

where the 1-th problem is baged on Tl"“’Tn which are inde-

pendent rve from conditional shifted exponential E(yei,l) and
where 91, 62, -.. are iid with DF F with support [a,»), a =

0. He study the behaviour of the tests mentioned in the pre-

vious sections via EBS. In section 3.3.2, we will consider

81,92.... wWith general DF F with support [a,»)} and prove that

11



i. iifo Cmax(r)/0¢(?) = 0,

where G¢(?) = {CB(?).CN(Y),CL(Y), CF(Y)} and

Ce(r) 1  Cgl¥) Cg(r)
1im = = s lim = lim -
r—0 C_(r) 3 y—0 Cr(¥)  »r—0 Cy(x)
C.(») Co{7) C.(7)
Hm -2 = lim * = lim 2 =0
y—0 C.{(r) r—0 C (r) »—0 Cu(»)
L N N
C. () Ce(2) C. ()
lim -2~ -1 , lim -2 =90 , Iim B =
y—o Ca(r) y—ro Cu(y) v—o Cu(y)
c (» C (r) C (»)
lim /2% - 1im -BEX - g /Bg® and lim Bax -9
y—o Co(y) = C () y—o  Gn{(7)
F L N
Cq(¥)
In section (3.3), we will prove that lim = 0 for
' P> C¢(r)
6y(r) e { 4, Cptr), T} . IE 8y, 6, ... have a
Gamma{1,2) or u{(0,1) distribution and if 91, 92, ..; have

Cs(r) ) i

E{6,1) distribution then lim
b CF(r) 2

In the end we will make some numerical comparisons.

12



CHAPTER 2

EXACT BAHADUR SLOPE FOR TRIANGULAR DISTRIBUTION

2.1 INTRODUCTION

In this chapter we will study +the testing problem
(1.3.8). We will compare the six methods viz., sum of the
p-values, maximum of p-values, minimum of p-values, logistic,

inverse normal and Fisher via EBS.

22 DERIVATION OoF THE EBS
In this section, we will study the behaviour of the

tests mentioned in chatper 1 via EBS in case of the following

problem.

Suppose that the p-values Ul' ey Un are i1id rv's shich
have a u{0,1) distribution under H0 and a distribution which
is not u{0,1) under Hl'

i.e., HO = ﬁl' e Un are iid with p.d.f £ which 1is not
u(0,1) but has a support A which is a subset of (0,1). Inmn
this chapter we will study the case where

£(u) = (-b%/2) u+ b, 0 <u < 2/b, bz 2.

The p-value in this case is given by

= = =
Pn PO(Un o un) uoo-

13



The EBS'e for the tests given in chapter 1 are reported

in the following theorem.

Result ¢(2.2.12:¢

A(l).CF(b) = 1 + 2inb -~ 2¢n(3 - 2in2 + 2inb) 2. 2.1
A(2).C(b) = - 2in m (b (b)), where b_(b) = - 2/3b
-zb_(b) (1-e7%)
and ms(ba(b)) = inf e ———————} . z.2.2)
ze(0,%) &
A(3).CL(b) = ~ 2¢&n mL(bL(b)}, where
by (b) = (b/2-1)2 2n(b-2) - b%/4 fnb + blnb - "2 + b2
and
- —sz(b)
mL(bL(b)) = inf ¢ e n 7 csc{nz) } . C2.2.3
z={0,1)
b4 2
; -1
A(4).CH(b) =z — I:iﬁ[ 2 @ (Z/b)] ] . 2. 2.4
167
A(S).Cmax(b) = 2% b-244&0n 2. (2.2.52
'A(B).Cmin(b) = {0 . {(2.2.6)

The first four statements can be proved in a similar

manner. Therefore, we will prove A(Z) only.

14



Proof of AC2)

n
TB Ui w.p.1
= - Z ) bg(b) under b where
: n
Y n i=1
2/b
bB(b) = E( -0 ) = - J u {—b2/2 u + b) du = - 2/(3b), b > 2
0

Thue thecrem (1.4.1) and Theorem (1.4!2) gives
Cs(b) = - 2 én ms(bsfb)

= - 2 in { int 227(3B) (4 _ 7%y /, } .

z>»0

For the proof of A(5) and A(6) we need the following

theorem {(see Abu-Dayyeh [1]1).

Theorem 2.2.1.

Let Ul, UZ’ .-+ be 1id rv's. He want to test HO: U1 ~
u(0,1), vs,_Hl: Ui ~ £ on (0,1), which is not u(0,1). Then
1. Cmax(f) = - 2 én{ess. Supf(u))

where ess.Supf(u) = Sup{#: f{u) > 0} W.p.1 under f.

2. If t(&nt)% f(t) — D a8 t —— 0, then Cpyp(£) = 0.

156



Proof of A(B)

By the above theorem

Cmax(b) = - 2 in{ess. Supb(u))

where eas.Supbu = Sup{g: f{u) > D} w.p.1l under b.

For f(u) = -b%/2 u + b , 0 <u < 2/b,
2 / b . Therefore,

I

ess.Supbu

C .. (b)

max

i

_ 9 en(2/b) =28 b - 2 2.

Proof of ACG)

lim & (4 £)2 £(t) = lim t(In 1)2 [— b2/2 t + b}
t—0 +—s0

- b lim 4 )2 - 22 1im t2(en £)2 .
+t—0 t+t—0

Clearly, by using L-Hopital rule twice, lim  t{n )2 = 0
+-—0

which iwplies Cmin(b) =0 .

How we will find the limits of the ratios of every palr
of thege slopes as b —= 2 and as b —s . Thie gives the

following results:

C (b)
1im ——aX

= 0, where C,(b) = {? (b),Cy{b),C; (b),C (b)} .
b2 Cu(b) @ S N L F

and

16



Cq(2) (@)
= 1.084774707 , = 1.078030255
Cy(2) c(2)
C(2) | -
and . = 1.5616979860 (see Table 1).
Cpl(2)
Cmax(b) 1 h
Algo, lim -B3X " _ 3 vhere C© (b)e{é (b),Cu(b),C. (b),Cu(b }
b Cy(b) ? S N L), Cplb)
(b)
1im 28X - »

b—e Cmin{b)
Proof:
By using Theorem (1.4.6) (2):

1-bL(b)

Thus

CL(b) z - 2 40 {bL(b) €

1—bL(b) '
, v bL(b) > 0.852 <cz2.2.8)

which implies

Cmax(b) < cmax(b) < Cmax(b)
CL(b) —ZénbL(b)-2+2bL(b) 2bL(b)
C (b} -24n242Enb

lim -22% < lim
b—ro0 CL(h) b—m 2bL(b)

—-&n24+ Enb

= lim -
b—w bL(b)

17



1
= 1im -—— , 8ince lim bL(b) = o
b—o bbL(b) b—w

by using L Hopital's rule.
But

, b-2 b-2
bi(b) = 1+ [ — ] @n[ - ] and therefore

2 b
) b b-2 -
ltm bb (b) = lim [b + = (b~2) &n[ — =1 C2.2.9
b—rco b—w 2 b
and hence
C (b)

lim 22X <13 C2.2.10)

b CL(b)
Again by Theorem (1.4.6)
Cp(b) < - 2am[2 b (b) e ] , Y b (b) Z 0 (2.2.11)

and therefore

c (b) -2in2 + 240b
WmaX N
CL(b) —2£n2—2£nbL(b)+2bL(b)

which impliee that

C .. (b bby, (b) ,
1im BAX > 1im 1 - —b-—m" + bbL(b) = 1 (2.2.42)
b—o CL(b) b— L :

18



Hence from (2.2.10) and (2.2.12) we have

C___(b)
lig 28X 1.
b—o CL(b)

1

Nuxt by (2.2.4) and (2.2.5) we have

v
%im EAX = lim 7 5 = lim g(b)
—x O (h) b-so b b—w
“ e RV Gl
16n
Let ¥ = - 8 1(2/b) —> b= 2 / #(-y). Thus as b — o we get
y — o, | C2.2.1%

Then
-2 Zn(1-8(y)) (1-8(y))?
g(y) = . C2.2.14)
2
)
By Theorem (1.4.8)
| e(y) 12 _
(1—1'(?))4 Z2 f —— ' 2.2.15
v+vY /2
e{y) '
Also, 1 - 8(y) = C2.2.160
¥

which implies

18



~ 2 n(1-8(y)) = v2 + 22y ¥ n(2n) . ' C2.4.17)
Finally,

[1-§[Vr5~y]]2 < az[er'y] / 2y° I_ ca.2.18

y2(2£n. vy + Zn 2m +'y2)

(52 /)

‘Thus gl{y) =

lim g(y) = 1 (2.2.19
Yo ,

By (2.2.14), (2.2.15) and (2.2.186)

[en 20 wP2mssr/ w72 )] (V2 v/ 773 )

gly) =
2 y4

.Then
lim g(y) = 1 C2.2.20)
Y-

Hence, from (2.2.19) and (2.2,.20) we have

C (b)
13gm 28X " _
b—» Cﬂ(b}

[
ek
L

- Thus as b —— ® all tests are equivalent.
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The proof of the remaining limits is similar to the proof
glven above.

Now we will compare the above EBS's for 2 < b < w,

Result 2.2.2.
CB(b) > cnax(b) for ? b=z 2.
Proof: By Theorem (1.4.5) we have
Cs(b) z - 2 in(e bs(b)) = - 2 - 2£nb8(b) and by (2.2.5)
Therefore,

Cs(b) - cmax(b) Z -~ 2 = 2n(2/3b) + 2é02 - 2 inb

-2 - 2in2 + 2 In3 + 2inb + 2 02 - 2 inb

243 - 2> 0

il

ro— C,(b) = Cmax‘b) s ¥ bz 2.

Result 2.:2. 3.

Coax(P) > Cy(b) v bo> 8.

Proof: By (2.2.4) and (2.2.5) we get

4 2

8(b) = Cp, (b) = Cy(b) = 2¢ab - 2002 ~ —— { [V 8" (2/b)]}

By (2.2.13), we get

1-3(/7 ¥}
{1}’

g{¥) = - 2in{l - B(y)) ~

21



By Theorem (1.4.7), (2.2.16), {2.2.17) and (2.2.18) we have
g(y) =% 2n + 2%y ,VYy>0,ie,Vhb> 4.
Then g{y) > 0 if én 2n 4+ 2 én y > 0

1fb>2/[@(-1/~/27)]gs.

— Cmax(b) > CN(b) . bz 6

Regult 2. 2. 4.

I
o

1im [Cﬂ(b) - ¢,(b) ]

b—

Proof: By (2.2.3), (2.2.4) and (2.2.11) we get

vd 2

8(b) = Cy(b)~Cy(b) = — {%[? 2 5'1(2/b)]} +22n by (b)+2-2by (b)

By (2.2.13), we get

g(y) = - {1 - §[¢r£" y]}z + 2 bL[ 2 ] +

m(1-s(ynt U

1-%(y)
-2
2 - 2bL[ ] ca.2.21)

1-8(y)

Now
9
2 1 1
bL[ ] = [ - 1] (nl%(y)] - cn[1-§(y)] + .
1-2(y) 1-8(y) 1-%(y)

Then by (2.2.15), (2.2.16), (2.2.17) and (2.2.18) we get

R ) [ﬂ]z

& f—
“1~ﬁ(y)] L . »(¥)

e{y)

( ely) Y1 .
|l {3 tn2nay /2+&n[1¥f n/2] c2.2.a2>
2

22



we have
(22 ¥)) 2rey
> (g.2.23
[1—§(¥)]

o s /23]

By (2.2.21), (2.2.22) and (2.2.23) we get

4

Iim g(y) = w
y-—wo

and

lim [ Cy(b) - Cp(D) ] = w . This completes the proof of
b—om»

result (2.2.4).

Result Z2.&.5.

11 C,(b) - C.(b) | 2 0.
b_f © [ L F ]

Proof: By (2.2.8) and (2.2.1) we have

g(b) = C(b) - Cg(b) = ~ 2 in by (b) - 2+ 2b(b) -1-2b
+ 2n(3 -2 2+ 2 inb) .

Now

Z lim (bL(b) -~ <&nb) = (3 - 2 in2 ),

b—sm

3-22Zn2+22nb 2
lim 2 ¢n = 2 in lim —— )
b— 'bL(b) b—w bbL(h)

Then (2.2.8) and (2.2.10) imply

lim [ Cp(b) - Cp(b) ] 2 -3+ (3-22n2)+24n2=0
b—r0
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Note that from theorem (2.2.5) Cy(b) is greater than Cp(b)
for large b, and from theorem {2.2.8) CL(b} is greater than
Cp(b) for largé b. '

2.3 SUMMARY OF THE NUMERICAL RESULTS _
Table (1) gives the performance of EB8"s . for - different
values of b: b e [2,15]. We observe that when b = 2 the

numerical calculations verify the mathematical results:

Cq(b) > Cu(b) > Cp(b) > Cg(b) > Cp (b)Y = Cpyy (D)

But for b — ® we could not verify the mathematical
results numerically because of the difficulty to get the

values of EBS's on the computer.

The behavior of EBS’s in different intervals is given
below:
b= [2,2.25]: CS(b) b Cﬂ(b) . CL(b) > CF(b} p Cmax(b)
b e {2.5,2.75]: Cs(b) > Cﬂ(b) > cL(b) > Cmax(b) » CF(b)
b = [3,15]: Cs(b) > Cmax(b) > CH(b) > CL(b) > CF(b)

Summary: For this problem of combining independent tests of
hypothesis, we showed that the TB combination is better than

all other combination methods in case of triangular distribu-

tion via EBS.
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In this problem, by using the limits and numerical
results, we héVe shown that the maximum of p-valutes is worst
than all other combination methods at minimum value of the

parameter b = 2.

Also, by difinition of efficiancg and by using numerical
results, we find that sum of p-values is better than  inverse
normal method, also inverse normal is better than the logis-
tic method and the logistic method is better +than Fisher's
method which implies that the sum of p-values is better than

all other methods as b — 2,

But for different values of b, we can see in Table (1)
that the sum of p-values is better than all others. Also, we
provve that the sum of p-values is batter than the maximum of
p-values for all values of b, and all other methods are worst
than maximum of p-values, which iwmplies that the sum of p-

values ie the best.
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CHAPTER 3

EXACT BAHADUR SLOPE FOR CONDITIONAL SHIFTED
EXPONENTIAL DISTRIBUTION

3.1 INTRODUCTION

In this chapter we will study the following testing
problem: suppose that we test
HO: y = 0, vs le Yy >0

where the 1i-th problem is based on Tl’ veva Tn which are

independent random variable from conditional shlfted exponen-

tial with pdf f(xIB) = e—(x-—y@)’ X = ¥€ and 61, . s ey Gn are

iid with DF F with support [a,w), a = 0. Also, we will study

the szame tests that we studied in chapter 2 via EBS.

32 DERvATION OF THE EBS witH aenerAL DF. F oF &,

In thls section we will study the behaviour of the tests
mentioned in Chapter 1 vis EBS.

The p-value in this case is given by

For the tests given in Chapter 1, the EBS e are given in

the following theoren.
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Result €3.2.1)

A(l). CF(?)
A(2). CS(?)
where
A(3). Cp ()
where

and by (r) = 7 Eg(8) - Eg(e”® - 1) ta(1 - &)

=2 ¥ EEe -2 &nf 1 + yEFe ] (3.2.1D

= - 2 ¢n mg( 1/2 Bple™®) ),

-tz —z
ms(t) = int e (1-e¢ ©) / =z } C3.2.2)

z>0

= = 2 &0 mp (b (7))
_bL(?)z
mp (7) = inf e nz CSC(nz) (3.2.3)

0<z<]

(=

- [l o )

A(4). Cy(r)
A(B). Cmax(?) = 2y = (3.2.5
A(8). Cpin(®) = 0 .

Proof of AC3)

-

l—e_ye] w.p.1 under .

My

27
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{For more details see Bataineh [5]).

Also, by Theorem {1.4.1) and Theorem (1.4.2) we get

—bL(r)z
CL(Y) = - 2 én{ inf [ e n z CBC(rz) ] } ;
O<z<1

Proof of A(S5): By Theorem (2.2.2)

Suppose g(6) is the pdf pof the DF F. Then the joint pdf
of x and & is
h(x,8) = g(8) £(x|€) where F(x}|6) = e (X779) , X > ¥E.

Then the marginal pdf of x is

x| x|r

£(x) = J h(x,0) dé = [ e X %) 0y a6 , x > ay, a2 0

a a
- 2i|}’_
e ™ J ? are) , x > 6
= {
a
¢ otherwise.
Then under » the p-value = e ~ = P

satisfies : 0 < P ¢ & 78
ess. sup P = e

which implies Cmax(r) = 2»a by theorem {(2.2.1).
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Froof of ACBD

—-{inp)/r
g(p) = j e’® g(e) as
; |
then 1im p(iﬂp)z &(p)
g )2 ~{inp)/r
Ap
= lim -———J e’? g(e) do
p—0 1/p
| 8 ~(tnp) /¥
= lim —p2 [(2&09)/p J € g(e) do +
p—0
&
(¢np)? [—mp] ]
g .
~{<énp) /¥
= 1lim —2p&bpj &° g(ey a& = 0
r—0

a

veing L hopital rule since g{x») = 0 and limo p(&np)z = 0
P—-Q-

 Now we will start comparing the EBS's.

Firstly, we find the limits of the ratioes of every pair
of these slopes as ¥ —— 0 and as ¥ — ®. This gives the
following results
Cq(¥) Cp.(»)

AC1), linm = lim = lim — =
y—0 CL(r) y—0 Cy(v) y—0 CE(?)

Cmax(r) B

0
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ACEZY . 1im =
r—0 Cglr) 3

BC1) |

BC2) |

Cpx) 1

€L
lim = 1
¥ —r00 CE(}"')

lim =1lim =D,
Yt CN(?) Febl0 CN(Y)

The proofs of equalities in A(1)} and in A(2) are simi-

lar. Therefore, we will prove one of them which iq

Ca(2r)
lim -2 = 0. Also the proofs of the equalities in B(1l} and
»—0 Cr ()
C; ()
B(2) are similar and therefore we will prove lim = 1.
' ¥ CF(Y)
Proof
By theorem (3.2.1)
1 e
bo(¥) = S EF[e ], | (3.2.7)
’ 1 - 6 i
bol{7) = - — K, |8 &7 €3.2.8)
S 2 F
and
’ ye -6
These imply
bé(ﬁ) = - Ep © finite, 'bé(ﬁ) = o .

Thue by part (2) of theorem (1.4.3)
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lim lim vy -
y—0 CL(V) Varkzo(sum of p-value) —0 EFee in(l-e

Co(¥) Var,_g(logletic) ~Eg6/2 2
Yoy

CpL ()
Now we will prove lim =1
r—» Cp(¥)

By (2.2.12), (3.2.3) and (3.2.1)

Cp(7) . -2Zn2 - 2nbp(r) + 2by (¥)

Clr)  2E(8) - 2ZA(147EyS)

CL(V) -2Ln2 - 2£abL(7) + ZbL(r}
lim lim
r—o Cplr) r—ro  2rEg(8) - 280(1+7E0)

1A

—zbétr}/b[l('r) + 2b£(?)

= 1im , by L 'Hopital rule
Y —hd EFG
2EF(9)_ 22—
1+yEF6
GL(r)
1lim < 1 C3.2.,10
r—+m—CF(r)
where
lim by(r) = , lim bL(y) = By 6 €3.2.11)
 aae Lo IR ¥—300

Similarly using (2.2.8), {3;2.3) and (3.2.1), we can show

that
1 CL(?)
im

P —00 CF(Y)

> 1 (3.2.12>
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Cp(»)
Hence from (3.2.10) and (3.2.12) we get lim o

= 1.
¥—rm CF(y)

Result 3. 2.2.

im [ €00 - ety | = 0.

¥ —H0
Proof: By (3.2.1) and (2.2.8)
Cplr) = Cpr) £ 2yEg(8) - 2in(14rEp6) + 2in(bp(r)) + 2 - 2b;(y)

b (¥)
= 2YEF(9) - ZbL(r) + 2 + 20 | —2

1-I-;vEF9
by () by ()
lim —————— = 1lim = 1 by (3.2.11)
P —t 00 1+yEF(9) Pt O EF(e)
lin 2 [ YEg® - by (¥) ] =2 (-1)=-2, by L'Hopital rule

¥ —0

Then lim [ Cylr) = Cp(r) ] < 9

3 D

—— CF(;f) < CL(y) for large ¥.

From the above relations we conclude that locally ase »

Culr) > Cr(r) > Cglr) > Cp(r) > Cma¥(r) > Coan?)

min
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But ag y —+ ®, we conclude that only

Cﬂ(r) > Cr{r) > Coax(?) 2 Cplr) > Cmin(?)

As for as Cs(r) is concerned, we can’t conclude any thing for

general prior F because lim bé{?) / bs{?) has an indeterhi—
: ) -

nate form (0/0). Therefore, we will consider certain priors,

namely, 0(0,1), G(a,7) and E(6,1).

23 THE EBS's witH sPeEciFic DF. F of €

Recult 3.3.1

= bg(¥) |bg(¥)

1lim = 1lim C3.3.1)
P s 00 CF(y) 37 o= 00 EFQ

Proof: By (3.2.7), (3.2.8) and Theorem (1.4.5)

Cg(?) ~2En2. - 2&nbg(7)
lim < lim
y—so Cplr)  r—w 2rRgé - 20n{14rEgs)

= lim = lim
¥—r0 EFQ 40 EEQ
ZEFQ - 2 ———
1+yEF6

Similarly from (3.2.7), (3.2.8) and theorem {1.4.5)
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lim z lim which proves theorem
y—o Ca(y) 00 Rg®

(3.3.1). Now we will take the special priors. From (3.3.1) we

conclude that

- bg(#) |bg(¥)

1. e ~ 0(0,1) : lim = 0. 8.3, 2
y— E.&
F
_ ~ bg(¥) |bg(r)
2. 8 ~ G(a,B) : lin = 0. (3.3.3
. g 2. E &
F
. ~ bg(r) |bg(#)
3. & ~ E(6,1) : lim = 0.5 €3.3. 4>
b EFB

As a special case for pdf of 6, let & ~ G(a,) with a =

1, # = 2. Here we want to determine the performance of CS(Y)

with respeét to anbther EBS's.

From result (3.3.1), we conclude that CS(V) < CE(T) aB

yo— 0

By result (3.2.1) the EBS°s of the tests under study when

e ~ G(1,2) are as follows:

CFfT)

4 ¥y - 2 Ln(142y) ) (3.3.5

1
Coly) = - 220 mg) ——
S 5[ 2(1+2r) ]
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I

(1-e"%)
ety = ame { o [ 2]
230 Z ' o

CLr) = - 2 0 my(bp())
[&.4]
1 .
~ _ = ;ve_ _ _ —p8 -8 /2
b fr) = 27 - J [e 1] zn[l e ] e as
0
mp (t) = inf e 2 2 7 CSC(nz) } C(B3.3.7)
0<z<1
® 2
1
Cu(r) = | — J Fr-1/2) P{i_l[e_?'e]] ae (3.3.8)
K 2
0
C ., (r) =0 | €3.3.0

Finally, we make numerical calculations for the EBS of

‘these procedures for different values of » (see Table 2).

3.4 SUMMARY OF THE NUMERICAL RESULTS

Table (2) gives the performance of EBE's fTor different
values of ¥: v « [0.05,20]. WHe obsexrve that when » = 0.05 the
numnerical claculations verify the mathematical results

Cy(¥) > CL») > Cg(r) > Cplr) > C ) = C 4 (¥)
But for y —* ® we could not verify the mathematical results
pumerically because of the difficulty to get the vélues of

EBS & on computer.
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The behavior of the EBS5’s in different intervals 1is
given below:
= 0.05: Cy(r) > Cp (¥} > Cg(¥) > Cp¥)
(0.1,0.5]: Cs(y) > Cul?) 2 Cp(») > Cpl)
= 1: Cplv) > Cp(¥) > Cp(y) > Cgl¥)
€ {2,31: C () > Cp(¥) > Cpl¥) > Cg(¥)
€ [5,8]: Cg(r) > Cp () > Cy(¥) > Cglr)
(10,201: Cp{r) > Cgl¥) > Cpl¥) > Cq(¥)

t

RO®" RO %
!

I<
M

Summary: We showed that in case of shifted exponential dis-
tribution via EBS the Tn combination is better than all other

combination methods.

We use only the limits of different result Bahadur
slopes, as the parameter » — { or as ¥ —— and two
caces for distribuion of 61, €y vuns In all the above c¢asges
we find that the inverse normal method is better +than all
other methods. But for other values of the parameter ¥ we use
the numerical calculations to show that the inverse normal is

the best in thle case.
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Appendix



TaBLE (1

THE EXACT BAHADUR SLOPES FOR TRIANGULAR DISTRIBUTION

€ (b)

C, (b}

Ce bl

Cmax(b)

Cuib)

. 3452945130517

. 2952464FF0005235

. 189069783783

0000000000000

. 346010930042

. 295842737991

. 189403144842

. o4gg7774618/

. Z0Z24563664099

C29BIZ5Z2567007
. 200502047511

. 192405842817

150584238571

TO00595 750084 |
o097 75088021

. 318309886201
LE18B81753914
Pl Kt RS R0
TSZA50830010

- S06831397420

LA17332797411

. 381232085407

. 3120995456434

e —

L 5230410594946
. 345730765090

222632184025

. 197093398683

Q29777224986

. 33/059339701

L 205799576720

L 049385225180

— e — ]

, 095803283374

. 403987834649

. 372680056860

. 4824648272030
. D2a/712987138

.30102320790%

TPRFaA0010362

LAA8581 323161

. SA4F30664992
37371636620
-40987578451

. 2064839847546

L 1905620359609

A EBA5Z20244

273452640334

. 235566071313

. A3975054813
LA445803002380

L 703077516369

_BAAR 77692697

.35798465649/8

LB872927797011

1.03373091049

. 4515463412199

. A3093437883%

AAL287 102629

L B0B32200250

L Ga6T07 462237

73721096040

. 792232730817

.S21/477956183

132786347829

L934719668418

1.9887248474675
2. 03093024902

1, 095683458742

578192666879

e e m—

TE15615199156

La10930216216
1.119231573587

SR
1.38629436112

53281740031
1 . 08352869370
1. 2727 265 35C

1.37041679068

2. 3869725492

1.609574245748

2.70280567181

1.811775854641

3.416101014Q1

2.29319211890

1.06811424600

1.8325814637/0

{.561280238C

1.187256944251
1.4B031546%078

1.949991874616

2. 19722457734

2.20552093699

1.896315022C
2. 18456250196C

3.21887082467

. 46047 1451C

4.22703061876

2.86113Q17723

402980604109

3.346780488051

2.51578217167




THE EXACT BAHADUR SLOPES FOR CONDITIONAL SHIFTED EXPONENTIAL

TasLE (2)

C ()

Cp(¥)

Cpl)

Cm(r)

.024854878579

. 029840070161

.009379640391

. (32009921342

.080301841654

.251222558124

.081784329275

.035356886423

. 084473593752

.218770534233

. 1270555287568

.232291668263

.441441513382

.379599248586

.259992741509

632874874139

B17277077652

. 5633661935569

.4244268870195 | .

~409577433915
605687850679

. 764426605277

.613705638828

815260345902

1.58872445840

1.95979065491

1.80277542266

1.98298777937

2.60526097873

4.90017266949

4.78112417514

3.278116832207

8.186480336489

4 18208490725

15.1631904413

8.10817970184

4.59608066963}
e ———————eeeee it
7.37182334056

[15.2042094544

5.0027210492%2

5.47533923656

96.0620602760

26.333b5733118

12.6266868817
21.1931656324

33.4908814141

33.91085512486

40.3568000374

€.81343848453

71.6401280838

72 5728558666

162.328375064




Program 1.

Pascal program to find the values of C(b)
PROGRAM ABED;

VAR -

{ s*x VARIABLES k¥ h
ZZ,%,WW,BH,EKK,EE,BB,MM,M,NN,N,11,1,DD,CC,C,G,B  : REAL;
JJ,BF,CF,CHAXB,DI,YY,CS . : REAL;
J - : INTEGER;

BEGIN

{ * READ VALES OF b % }
FOR J:=1 TO 20 DO
BEGIN
WRITE (" INPUT THE VALUE OF B:");

{ % THIS LOOP FOR MINIMIZE SUM OF P-VALUE X}
READLN(B);

{ BB:=(1-EXP(-B))/(2%B};}

{BB:=2.3444 }

Z:=1.0E-2;
{ BB:=(1/(2%B))}-EXP(-B)/(2%B);1}
M:= EXP({Z*B)*(1-EXP(-2))/Z;
I:=2;
WHILE Z<= 20 DO
BEGIN
Z:=Z+1.E-2;
N:=EXP(Z*B)*(1-EXP(-2))/Z;
IF N < M THEN
BEGIN
M:=N;
I:= 23
{ JI:=—1/(2%(1+2%B));}
- ERD;
END;
C:=-2%LN(M);

{ % WRITE VALDE OF bs(b) *}

WRITELN( ‘ Ca~—-———~~ >, €);

-[************#**t****#**#********************* R AOROK KRR KA K KKK )
{ kkkkkkkkkk THIS LOOP FOR MINIMIZE LOGISTIC EBS HHKKKAKKKK ]



{ BB:= BXB*LN(B-2)/4~B*B*LN(B)/4+LN(B-2)-B*xLN(B-2)+
B*LN(B)-LN(2)+B/2;
7Z:=1.E-3;
MM: = (EXP(-ZZ¥BB)*ZZ¥P1)/SIN(ZZ¥PI)};
11:=2%;
WHILE 22Z< 1.0000 DO
BEGIN
NN := (EXP(-ZZ¥BB)*ZZ*PI)/SIN(ZZ*PI);
IF NN < MM THEN
BEGIN
MM:= NN;
11 := 2%;
END;
77 := Z7Z+1.E-3
END;
CC:= —2%LR(MM);)
{ #x% WRITE MINIMUM VALUE OF LOGISTIC EBS k%

{  WRITELN( CL ~=--=-—~=m=remmmm > *,60)3}
{..._._,_;, ______________________________________________________
{ a%xk%  WRITE VALUE OF Cf(b) *kkkkkk
{ WRITELN( -------- >=7,-2¥LN(BB)+2*BB);
WRITELN( *BF-~~=m=- > ,244%B);

WW: = 1-3%LN(2)-LN(PI);
' YY : =2%LN( 3+ LN ( 24P1 ) +B¥B+24LN(B) ) ;
EE:=WW+EE /HH+YY;

WRITELN( "G(t)-———~>",EE): _
WRITELN( 'L.T.~———- 5’ ,—2%LN(BB)-2+24BB-1-2%LN(B)+2¥LN(3~
25LN(2)+2*%LN(B)));
WRITELN( =~=—————-3%",-2%DD/BB);
CF : =1+2%LN(B)—-2XLN ( 3-2¥LN{ 2)}+2*LR(B) } ;
WRITELN( “CF-w-——— e 5* , ~2KLN(142%B)+4%B) ;
WRITELN( “BL~-=——=~ 5 ,BB);

WRITELN( "MM--->" ,MM};}
{ JJ:=1/(24%B)Y-EXP(-B)/(2%B);
WRITELN( JJ————- s ,JJ);}



Progfam nuﬁber 2 _
{ *xx THIS PROGRAM IS T0O CALCULATE THE INTEGRATION VALUE OF
bl, FOR THE SECOND PROBLEM UNDER GAMMA DISTRIBUTION (1,2),
BY USING SIMPSON'S RULE %x%x}
PROGRAM ABED{NPUT,OUTPUT);
VAR . ,
RR,2Z : REAL;
BL : REAL;
{ REFKAKKRKKKKKIKK KKK FPNCTIOH FAY SORRKRIOKKKIOIKKCKRRRKKRK )
FORCTION FAY{(VAR R:REAL;VAR Z : REAL):REAL;
FUONCTION FRP(R,X: REAL) : REAL;
VAR AM,MN,BN:REAL;
BEGIRN
{ ¥k DIVIDED THE FURCTION IRTO SEVERAL PARTS kkkxx )
AM:= EXP(R¥X)-1;
MN:=1-EXP{-R*X);
BN:=EXP{-X/2.0);
FRP := 0.5%(AM¥LN(MN)*BN};

END;
VAR |
{ x*%x%  SIMPSON'S RULE KKK 1
L0,00,D1,P0,W0,W1,H2 : REAL;
NO,I : INTEGER;
BEGIN
RO := 1000;
LO:=0.0009;
00 := Z;
.. D1 :=(U0-LO}/NO;
PO:=0;"

WO :=FNP(R,L0);
FOR I:=1 TO NO DO
BEGIN
W1:=FNP(R,L0+0.5%D1);
LO:=zLO+D1;
W2:=FNP(R,L0);
PO:=PO+D1¥(WO+4*H1+H2}/6.0;
WO :=W2; ' ,



END;
FAY:=P0;
END;
BEGIN
WRITELN;
WRITE(’INPU'i‘ THE VALUE OF R AND 'THE MAX Z7);
READLN(RR,Z4);
BL:=2%RR-FAY(RR,ZZ);
- WRITELN({BL) ; READLN;
END. : |
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